Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Heliyon ; 7(7): e07671, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34381909

RESUMEN

Metachromatic leukodystrophy (MLD) is a human neurodegenerative disorder characterized by progressive damage on the myelin band in the nervous system. MLD is caused by the impaired function of the lysosomal enzyme Arylsulphatase A (ARSA). The physiopathology mechanisms and the biochemical consequences in the brain of ARSA deficiency are not entirely understood. In recent years, the use of genome-scale metabolic (GEM) models has been explored as a tool for the study of the biochemical alterations in MLD. Previously, we modeled the metabolic consequences of different lysosomal storage diseases using single GEMs. In the case of MLD, using a glia GEM, we previously predicted that the metabolism of glycosphingolipids and neurotransmitters was altered. The results also suggested that mitochondrial metabolism and amino acid transport were the main reactions affected. In this study, we extended the modeling of the metabolic consequences of ARSA deficiency through the integration of neuron and glial cell metabolic models. Cell-specific models were generated from Recon2, and these were used to create a neuron-glial bi-cellular model. We propose a workflow for the integration of this type of model and its subsequent study. The results predicted the impairment pathways involved in the transport of amino acids, lipids metabolism, and catabolism of purines and pyrimidines. The use of this neuron-glial GEM metabolic reconstruction allowed to improve the prediction capacity of the metabolic consequences of ARSA deficiency, which might pave the way for the modeling of the biochemical alterations of other inborn errors of metabolism with central nervous system involvement.

2.
J Colloid Interface Sci ; 581(Pt B): 905-918, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32956910

RESUMEN

Porous carbon encapsulated non-precious metal nanocatalysts have recently opened the ways towards the development of high-performance water remediation and energy conversion technologies. Herein, we report a facile, scalable and green synthetic methodology to fabricate porous carbon encapsulated transition metal nanocatalysts (M@TP: M = Cu, Ni, Fe and Co) using commercial tissue paper. The morphology, crystalline structure, chemical composition and textural properties of the M@TP nanocatalysts were thoroughly characterized. The catalytic activity of the M@TP nanocatalysts was investigated for the degradation of Congo red (CR) via peroxymonosulfate activation. Co@TP-6 was found to be the most active catalyst allowing 97.68% degradation in 30 min with a higher rate constant of 0.109 min-1. The nanocatalysts also displayed a carbon shell thickness-dependent electrocatalytic hydrogen evolution reaction (HER) activity, most likely due to the shielding effect of the carbon layers over the electron transfer (ET) processes at the metal core/carbon interfaces. Remarkably, the Ni@TP-6 electrocatalyst, with the smaller carbon shell thickness, showed the best electrocatalytic performance. They delivered an ultralow onset potential of -30 mV vs RHE, an overpotential of 105 mV at a current density of 10 mA·cm-2 and an excellent electrochemical stability to keep the 92% of the initial current applied after 25000 s, which is comparable with the HER activity of the state-of-the-art Ni-based catalysts.

3.
Am J Med Genet C Semin Med Genet ; 184(4): 885-895, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33111489

RESUMEN

GM2 gangliosidosis, Tay-Sachs and Sandhoff diseases, are lysosomal storage disorders characterized by the lysosomal accumulation of GM2 gangliosides. This accumulation is due to deficiency in the activity of the ß-hexosaminidases Hex-A or Hex-B, which are dimeric hydrolases formed by αß or ßß subunits, respectively. These disorders show similar clinical manifestations that range from mild systemic symptoms to neurological damage and premature death. There is still no effective therapy for GM2 gangliosidoses, but some therapeutic alternatives, as enzyme replacement therapy, have being evaluated. Previously, we reported the production of active human recombinant ß-hexosaminidases (rhHex-A and rhHex-B) in the methylotrophic yeast Pichia pastoris. In this study, we evaluated in vitro the cellular uptake, intracellular delivery to lysosome, and reduction of stored substrates. Both enzymes were taken-up via endocytic pathway mediated by mannose and mannose-6-phosphate receptors and delivered to lysosomes. Noteworthy, rhHex-A diminished the levels of stored lipids and lysosome mass in fibroblasts from Tay-Sachs patients. Overall, these results confirm the potential of P. pastoris as host to produce recombinant ß-hexosaminidases intended to be used in the treatment of GM2 gangliosidosis.


Asunto(s)
Hexosaminidasas , Enfermedad de Sandhoff , Fibroblastos , Humanos , Lisosomas , Saccharomycetales , Enfermedad de Sandhoff/tratamiento farmacológico , Enfermedad de Sandhoff/genética
4.
Water Sci Technol ; 82(7): 1370-1379, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33079716

RESUMEN

While extensive work has been done on the generation of adsorbents by carbonization of large polymeric structures, few works are currently available for the use of monomeric carbon molecules as precursors during carbonization. In this work we report the formation of a carbon adsorbent material from the carbonization of glucose in the presence of zinc oxide (ZnO) nanoparticle templates. Carbonization at 1,000 °C under inert atmosphere yields a product with Brunauer-Emmett-Teller (BET) surface area of 1,228.19 m2/g and 14.77 nm average pore diameter. Adsorption capacities against methylene blue, 2-naphthol and bisphenol-A at pH 7 were found to be 539 mg/g, 737 mg/g and 563 mg/g, respectively. Our material demonstrates a strong fit with the Langmuir isotherm, and adsorption kinetics show regression values near unity for the pseudo-second order kinetic model. A flow adsorption column was implemented for the remediation of tap water containing 20 mg/L methylene blue and found to quantitatively purify 11.5 L of contaminated water.


Asunto(s)
Contaminantes Ambientales , Nanopartículas , Contaminantes Químicos del Agua , Glucosa , Agua
5.
Diagnostics (Basel) ; 10(6)2020 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486376

RESUMEN

BACKGROUND: Mucopolysaccharidoses (MPS) are a group of inherited metabolic diseases caused by impaired function or absence of lysosomal enzymes involved in degradation of glycosaminoglycans. Clinically, MPS are skeletal dysplasias, characterized by cartilage abnormalities and disturbances in the process of endochondral ossification. Histologic abnormalities of growth cartilage have been reported at advanced stages of the disease, but information regarding growth plate pathology progression either in humans or in animal models, as well as its pathophysiology, is limited. METHODS: Histological analyses of distal femur growth plates of wild type (WT) and mucopolysaccharidosis type VI (MPS VI) rats at different stages of development were performed, including quantitative data. Experimental findings were then analyzed in a theoretical scenario. RESULTS: Histological evaluation showed a progressive loss of histological architecture within the growth plate. Furthermore, in silico simulation suggest the abnormal cell distribution in the tissue may lead to alterations in biochemical gradients, which may be one of the factors contributing to the growth plate abnormalities observed, highlighting aspects that must be the focus of future experimental works. CONCLUSION: The results presented shed some light on the progression of growth plate alterations observed in MPS VI and evidence the potentiality of combined theoretical and experimental approaches to better understand pathological scenarios, which is a necessary step to improve the search for novel therapeutic approaches.

6.
Nat Biotechnol ; 38(7): 892-900, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32284586

RESUMEN

The foundational adenine base editors (for example, ABE7.10) enable programmable A•T to G•C point mutations but editing efficiencies can be low at challenging loci in primary human cells. Here we further evolve ABE7.10 using a library of adenosine deaminase variants to create ABE8s. At NGG protospacer adjacent motif (PAM) sites, ABE8s result in ~1.5× higher editing at protospacer positions A5-A7 and ~3.2× higher editing at positions A3-A4 and A8-A10 compared with ABE7.10. Non-NGG PAM variants have a ~4.2-fold overall higher on-target editing efficiency than ABE7.10. In human CD34+ cells, ABE8 can recreate a natural allele at the promoter of the γ-globin genes HBG1 and HBG2 with up to 60% efficiency, causing persistence of fetal hemoglobin. In primary human T cells, ABE8s achieve 98-99% target modification, which is maintained when multiplexed across three loci. Delivered as messenger RNA, ABE8s induce no significant levels of single guide RNA (sgRNA)-independent off-target adenine deamination in genomic DNA and very low levels of adenine deamination in cellular mRNA.


Asunto(s)
Adenina/metabolismo , Sistemas CRISPR-Cas/genética , Citosina/metabolismo , ARN Guía de Kinetoplastida/genética , Adenosina Desaminasa , ADN/genética , Edición Génica/métodos , Células HEK293 , Humanos , Mutación/genética
7.
Nat Commun ; 11(1): 2052, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345976

RESUMEN

Cytosine base editors (CBEs) enable efficient, programmable reversion of T•A to C•G point mutations in the human genome. Recently, cytosine base editors with rAPOBEC1 were reported to induce unguided cytosine deamination in genomic DNA and cellular RNA. Here we report eight next-generation CBEs (BE4 with either RrA3F [wt, F130L], AmAPOBEC1, SsAPOBEC3B [wt, R54Q], or PpAPOBEC1 [wt, H122A, R33A]) that display comparable DNA on-target editing frequencies, whilst eliciting a 12- to 69-fold reduction in C-to-U edits in the transcriptome, and up to a 45-fold overall reduction in unguided off-target DNA deamination relative to BE4 containing rAPOBEC1. Further, no enrichment of genome-wide C•G to T•A edits are observed in mammalian cells following transfection of mRNA encoding five of these next-generation editors. Taken together, these next-generation CBEs represent a collection of base editing tools for applications in which minimized off-target and high on-target activity are required.


Asunto(s)
Citosina/metabolismo , ADN/genética , Edición Génica , ARN/genética , Desaminasas APOBEC-1/metabolismo , Citosina Desaminasa/metabolismo , Replicación del ADN/genética , Desaminación , Genoma , Células HEK293 , Humanos , Mutagénesis/genética , Transcripción Genética , Transcriptoma/genética
8.
Gene Ther ; 27(1-2): 104-107, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31267008

RESUMEN

The authors briefly describe their work in the construction of viral derived vectors for the use in gene therapy of muchopolysaccharide storage diseases (MPS), especially in Morquio A syndrome. The motivations to undertake that line of research about twenty years ago was the belief that gene therapy was the most plausible treatment for monogenic diseases due to the transient effect and its difficulty to reach bone tissue of the only effective treatment in use, the enzyme replacement therapy. The strategy used to increase the bone targeting was to include in the vectors an aspartic acid octapeptide that increases their affinity for the oppositely charged hydroxyapatite molecule of bone. It is also discussed the difficulties to do front line research in many developing countries, due to the extended belief that their research money should be mainly devoted to projects that render solutions in a very short time. However, the authors argue in favor of doing research in gene therapy, because it is proving to be the solution for many monogenic diseases, and therefore there is a need of people with good command of GT all over the world, in order to make good use of that therapy especially for ex-vivo treatments.


Asunto(s)
Terapia Genética/métodos , Vectores Genéticos/genética , Mucopolisacaridosis/terapia , Colombia , Terapia de Reemplazo Enzimático/métodos , Vectores Genéticos/uso terapéutico , Humanos , Mucopolisacaridosis/genética , Mucopolisacaridosis IV/genética , Mucopolisacaridosis IV/terapia
9.
J Clin Invest ; 130(3): 1288-1300, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31743109

RESUMEN

Immune response to therapeutic enzymes poses a detriment to patient safety and treatment outcome. Enzyme replacement therapy (ERT) is a standard therapeutic option for some types of mucopolysaccharidoses, including Morquio A syndrome caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency. Current protocols tolerize patients using cytotoxic immunosuppressives, which can cause adverse effects. Here we show development of tolerance in Morquio A mice via oral delivery of peptide or GALNS for 10 days prior to ERT. Our results show that using an immunodominant peptide (I10) or the complete GALNS enzyme to orally induce tolerance to GALNS prior to ERT resulted in several improvements to ERT in mice: (a) decreased splenocyte proliferation after in vitro GALNS stimulation, (b) modulation of the cytokine secretion profile, (c) decrease in GALNS-specific IgG or IgE in plasma, (d) decreased GAG storage in liver, and (e) fewer circulating immune complexes in plasma. This model could be extrapolated to other lysosomal storage disorders in which immune response hinders ERT.


Asunto(s)
Condroitinsulfatasas/uso terapéutico , Desensibilización Inmunológica , Terapia de Reemplazo Enzimático , Tolerancia Inmunológica/efectos de los fármacos , Mucopolisacaridosis IV , Péptidos/farmacología , Administración Oral , Animales , Células CHO , Condroitinsulfatasas/inmunología , Cricetulus , Citocinas/inmunología , Humanos , Tolerancia Inmunológica/genética , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Ratones , Ratones Noqueados , Mucopolisacaridosis IV/inmunología , Mucopolisacaridosis IV/terapia , Péptidos/inmunología
10.
Protein Sci ; 29(2): 606-616, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31833142

RESUMEN

Transcription activator-like effector (TALE) proteins have been used extensively for targeted binding of fusion proteins to loci of interest in (epi)genome engineering. Such approaches typically utilize four canonical TALE repeat variable diresidue (RVD) types, corresponding to the identities of two key amino acids, to target each nucleotide. Alternate RVDs with improved specificity are desired. Here, we focused on seven noncanonical RVDs that have been suggested to have improved specificity for their target nucleotides. We used custom protein binding microarrays to characterize the DNA-binding activity of 65 TALEs containing these alternate or corresponding canonical RVDs at multiple positions to ~5,000 unique DNA sequences per protein. We found that none of the noncanonical thymine-targeting RVDs displayed stronger preference for thymine than did the canonical RVD. Of the noncanonical RVDs with putatively improved specificity for guanine, only EN and NH showed greater discrimination of guanine over adenine. This improved specificity, however, comes at a cost: more substitutions of a noncanonical RVD for a canonical RVD generally decreased the protein's DNA-binding activity. Our results highlight the need to investigate RVD-nucleotide specificities in multiple protein contexts and suggest that a balance between canonical and noncanonical RVDs is needed to build TALEs with improved specificity.


Asunto(s)
ADN/genética , Efectores Tipo Activadores de la Transcripción/genética , ADN/química , Variación Genética/genética , Análisis por Matrices de Proteínas , Secuencias Repetitivas de Aminoácido , Efectores Tipo Activadores de la Transcripción/química
11.
Anat Histol Embryol ; 48(2): 117-124, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30585347

RESUMEN

In mammals, long bones are formed by ossification of a cartilaginous mould during early stages of development, through the formation of structures called the primary ossification centre, the secondary ossification centres (SOCs) and the physeal cartilages (PCs). The PC is responsible for long bone growth. The morphology of the PC and the SOCs varies during different stages of femoral growth. In this respect, several details involving the process of murine femoral development are lacking. In the present study, a morphological characterization of femur development from the embryonic period to adulthood in mice was studied using micro-computed tomography (micro-CT). To achieve this aim, femora were collected at embryonic day (E) 14.5, E16.5 and E18.5 and at postnatal day (P)1, P7, P14, P35, P46 and P52. CT images were obtained using a micro-CT scanner (X-SkyScan 1172; Micro Photonics) and analysed using the micro-CT 3D visualization software Mimics (Materialise NV, Leuven, Belgium) and NRecon (Micro Photonics). The results of the present study revealed that the femur and its PCs and SOCs undergo morphological changes during different stages of development, including changes in their shape as well as position and thickness. These changes may be due to the response of the femur to mechanical loads imposed by muscle surrounding the bone during these stages of development. The result of the present study is important to improve our knowledge related to ossification and growth patterns of mouse femur during development.


Asunto(s)
Desarrollo Óseo/fisiología , Cartílago/fisiología , Embrión de Mamíferos/fisiología , Desarrollo Embrionario/fisiología , Miembro Posterior/diagnóstico por imagen , Microtomografía por Rayos X/métodos , Animales , Ratones
12.
Pediatr Res ; 84(4): 545-551, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30323349

RESUMEN

BACKGROUND: Targeting specific tissues remains a major challenge to the promise of gene therapy. For example, several strategies have failed to target adeno-associated virus 2 (AAV2) vectors, to bone. We have evaluated in vitro and in vivo the affinity of an AAV2 vector to bone matrix, hydroxyapatite (HA) to treat Mucopolysacccharidosis IVA. METHODS: To increase vector affinity to HA, an aspartic acid octapeptide (D8) was inserted immediately after the N-terminal region of the VP2 capsid protein. The modified vector had physical titers and transduction efficiencies comparable to the unmodified vector. RESULTS: The bone-targeting vector had significantly higher HA affinity and vector genome copies in bone than the unmodified vector. The modified vector was also released from HA, and its enzyme activity in bone, 3 months post infusion, was 4.7-fold higher than the unmodified vector. CONCLUSION: Inserting a bone-targeting peptide into the vector capsid increases gene delivery and expression in the bone without decreasing enzyme expression. This approach could be a novel strategy to treat systemic bone diseases.


Asunto(s)
Huesos/metabolismo , Proteínas de la Cápside/química , Durapatita/química , Vectores Genéticos , Mucopolisacaridosis IV/terapia , Animales , Ácido Aspártico/química , Médula Ósea/metabolismo , Encéfalo/metabolismo , Cápside , Dependovirus , Perfilación de la Expresión Génica , Técnicas de Transferencia de Gen , Terapia Genética , Células HEK293 , Humanos , Hidroxiapatitas/química , Hígado/metabolismo , Ratones , Ratones Transgénicos , Parvovirinae , Dominios Proteicos , Transgenes
13.
Orphanet J Rare Dis ; 13(1): 152, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30220252

RESUMEN

BACKGROUND: Tay-Sachs disease (TSD) is a rare neurodegenerative disorder caused by autosomal recessive mutations in the HEXA gene on chromosome 15 that encodes ß-hexosaminidase. Deficiency in HEXA results in accumulation of GM2 ganglioside, a glycosphingolipid, in lysosomes. Currently, there is no effective treatment for TSD. RESULTS: We generated induced pluripotent stem cells (iPSCs) from two TSD patient dermal fibroblast lines and further differentiated them into neural stem cells (NSCs). The TSD neural stem cells exhibited a disease phenotype of lysosomal lipid accumulation. The Tay-Sachs disease NSCs were then used to evaluate the therapeutic effects of enzyme replacement therapy (ERT) with recombinant human Hex A protein and two small molecular compounds: hydroxypropyl-ß-cyclodextrin (HPßCD) and δ-tocopherol. Using this disease model, we observed reduction of lipid accumulation by employing enzyme replacement therapy as well as by the use of HPßCD and δ-tocopherol. CONCLUSION: Our results demonstrate that the Tay-Sachs disease NSCs possess the characteristic phenotype to serve as a cell-based disease model for study of the disease pathogenesis and evaluation of drug efficacy. The enzyme replacement therapy with recombinant Hex A protein and two small molecules (cyclodextrin and tocopherol) significantly ameliorated lipid accumulation in the Tay-Sachs disease cell model.


Asunto(s)
Células-Madre Neurales/citología , Enfermedad de Tay-Sachs/tratamiento farmacológico , Enfermedad de Tay-Sachs/terapia , 2-Hidroxipropil-beta-Ciclodextrina/uso terapéutico , Diferenciación Celular/fisiología , Línea Celular , Terapia de Reemplazo Enzimático/métodos , Femenino , Técnica del Anticuerpo Fluorescente , Gangliosidosis GM2/metabolismo , Hexosaminidasa A/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Masculino , Repeticiones de Microsatélite/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Pichia/metabolismo , Espectrometría de Masas en Tándem , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Tocoferoles/uso terapéutico
14.
Nat Commun ; 9(1): 3542, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154463

RESUMEN

The original HTML version of this Article incorrectly listed an affiliation of Josh Tycko as 'Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA', instead of the correct 'Present address: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA'. It also incorrectly listed an affiliation of this author as 'Present address: Arrakis Therapeutics, 35 Gatehouse Dr., Waltham, MA, 02451, USA'.The original HTML version incorrectly listed an affiliation of Luis A. Barrera as 'Present address: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA', instead of the correct 'Present address: Arrakis Therapeutics, 35 Gatehouse Dr., Waltham, MA 02451, USA'.Finally, the original HTML version incorrectly omitted an affiliation of Nicholas C. Huston: 'Present address: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA'.This has been corrected in the HTML version of the Article. The PDF version was correct from the time of publication.

15.
Orphanet J Rare Dis ; 13(1): 141, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115094

RESUMEN

The use of specialized centers has been the main alternative for an appropriate diagnosis, management and follow up of patients affected by inborn errors of metabolism (IEM). These centers facilitate the training of different professionals, as well as the research at basic, translational and clinical levels. Nevertheless, few reports have described the experience of these centers and their local and/or global impact in the study of IEM. In this paper, we describe the experience of a Colombian reference center for the research, diagnosis, training and education on IEM. During the last 20 years, important advances have been achieved in the clinical knowledge of these disorders, as well as in the local availability of several diagnosis tests. Organic acidurias have been the most frequently detected diseases, followed by aminoacidopathies and peroxisomal disorders. Research efforts have been focused in the production of recombinant proteins in microorganisms towards the development of new enzyme replacement therapies, the design of gene therapy vectors and the use of bioinformatics tools for the understanding of IEM. In addition, this center has participated in the education and training of a large number professionals at different levels, which has contributed to increase the knowledge and divulgation of these disorders along the country. Noteworthy, in close collaboration with patient advocacy groups, we have participated in the discussion and construction of initiatives for the inclusion of diagnosis tests and treatments in the health system.


Asunto(s)
Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/epidemiología , Colombia/epidemiología , Humanos , Errores Innatos del Metabolismo/epidemiología , Enfermedades Raras/diagnóstico , Enfermedades Raras/epidemiología
16.
Nat Commun ; 9(1): 2962, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30054474

RESUMEN

Therapeutic genome editing with Staphylococcus aureus Cas9 (SaCas9) requires a rigorous understanding of its potential off-target activity in the human genome. Here we report a high-throughput screening approach to measure SaCas9 genome editing variation in human cells across a large repertoire of 88,692 single guide RNAs (sgRNAs) paired with matched or mismatched target sites in a synthetic cassette. We incorporate randomized barcodes that enable whitelisting of correctly synthesized molecules for further downstream analysis, in order to circumvent the limitation of oligonucleotide synthesis errors. We find SaCas9 sgRNAs with 21-mer or 22-mer spacer sequences are generally more active, although high efficiency 20-mer spacers are markedly less tolerant of mismatches. Using this dataset, we developed an SaCas9 specificity model that performs robustly in ranking off-target sites. The barcoded pairwise library screen enabled high-fidelity recovery of guide-target relationships, providing a scalable framework for the investigation of CRISPR enzyme properties and general nucleic acid interactions.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Edición Génica/métodos , Biblioteca de Genes , Staphylococcus aureus/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Sistemas CRISPR-Cas , Clonación Molecular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Genes Bacterianos/genética , Células HEK293 , Humanos , ARN Guía de Kinetoplastida/genética
18.
BMC Genomics ; 19(1): 212, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29562890

RESUMEN

BACKGROUND: Understanding the diversity of repair outcomes after introducing a genomic cut is essential for realizing the therapeutic potential of genomic editing technologies. Targeted PCR amplification combined with Next Generation Sequencing (NGS) or enzymatic digestion, while broadly used in the genome editing field, has critical limitations for detecting and quantifying structural variants such as large deletions (greater than approximately 100 base pairs), inversions, and translocations. RESULTS: To overcome these limitations, we have developed a Uni-Directional Targeted Sequencing methodology, UDiTaS, that is quantitative, removes biases associated with variable-length PCR amplification, and can measure structural changes in addition to small insertion and deletion events (indels), all in a single reaction. We have applied UDiTaS to a variety of samples, including those treated with a clinically relevant pair of S. aureus Cas9 single guide RNAs (sgRNAs) targeting CEP290, and a pair of S. pyogenes Cas9 sgRNAs at T-cell relevant loci. In both cases, we have simultaneously measured small and large edits, including inversions and translocations, exemplifying UDiTaS as a valuable tool for the analysis of genome editing outcomes. CONCLUSIONS: UDiTaS is a robust and streamlined sequencing method useful for measuring small indels as well as structural rearrangements, like translocations, in a single reaction. UDiTaS is especially useful for pre-clinical and clinical application of gene editing to measure on- and off-target editing, large and small.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Reordenamiento Génico , Genoma Humano , Mutación INDEL , Osteosarcoma/diagnóstico , Antígenos de Neoplasias/genética , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/genética , Proteínas de Ciclo Celular , Células Cultivadas , Proteínas del Citoesqueleto , Genómica/métodos , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Osteosarcoma/genética , Eliminación de Secuencia , Linfocitos T/metabolismo , Linfocitos T/patología
19.
ACS Omega ; 3(8): 10243-10249, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459153

RESUMEN

Our work reports the hydrothermal synthesis of a bimetallic composite CoMoS, followed by the addition of cellulose fibers and its subsequent carbonization under Ar atmosphere (CoMoS@C). For comparison, CoMoS was heat-treated under the same conditions and referred as bare-CoMoS. X-ray diffraction analysis indicates that CoMoS@C composite matches with the CoMoS4 phase with additional peaks corresponding to MoO3 and CoMoO4 phases, which probably arise from air exposure during the carbonization process. Scanning electron microscopy images of CoMoS@C exhibit how the CoMoS material is anchored to the surface of carbonized cellulose fibers. As anode material, CoMoS@C shows a superior performance than bare-CoMoS. The CoMoS@C composite presents an initial high discharge capacity of ∼1164 mA h/g and retains a high specific discharge capacity of ∼715 mA h/g after 200 cycles at a current density of 500 mA/g compared to that of bare-CoMoS of 102 mA h/g. The high specific capacity and good cycling stability could be attributed to the synergistic effects of CoMoS and carbonized cellulose fibers. The use of biomass in the anode material represents a very easy and cost-effective way to improve the electrochemical Li-ion battery performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...